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HIGHER ORDER EFFECTS IN THICK RECTANGULAR
ELASTIC BEAMS*

ALAN SOLER

University of Pennsylvania. Philadelphia. Pa. 19104

Abstract-Goveming equations for the rectangular strip are investigated to obtain solutions which show the
relationship between classical beam theory and higher order theories. The exact equations of plane elasticity
are reduced to a coupled set of ordinary differential equations by expressing all dependent variables as series
solutions containing Legendre Polynomials in the thickness coordinate. Legendre Polynomials are particularly
advantageous for this analysis because their completeness. convergence and orthogonality properties are well
formulated, and because the usual stress resultants of classical beam theory appear naturally as coefficients
of the polynomials Po and PI' The coupled ordinary differential equations are obtained in a form such that
proper truncation of the series to obtain approximate theories is immediately apparent. The coupling effects
are investigated and a possible method of obtaining an approximate solution to the fully coupled equations
without truncation of the series solutions is suggested. A sample problem is worked out in detail to illustrate
the application of a new approximate theory.
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length of rectangular strip
thickness of rectangular strip
axial. thickness coordinates
dimensionless thickness coordinate = 2y/h
classical stress resultants of beam theorv
higher order stress coefficients •
classical beam theory deformation variables
higher order deformation coefficients
Legendre Polynomial of integral order n

INTRODUCfION

ENGI"''£ERING theories for determination of elastic stress and deformation fields in a large
class of beam, plate and shell type structures are reasonably well established and have
been extensively utilized in design analyses. However, due to approximations inherent
in their derivation, these classical theories are limited in their application to configurations
having thickness much less than some other characteristic dimension. Thus, these theories
cannot be applied with any guarantee of accuracy to the analysis of deep beams, or to
thick plate and shell configurations. Also, the classical theories are invalidated when
local effects predominate (such as in contact or stress concentration problems): in these
instances. the theories fail because the characteristic dimension of the problem is of the
same order as the structure thickness.

The range of validity of the classical theories has been extended somewhat by the
inclusion of effects such as shear deformation, and transverse normal stress: however, at
least in the theory of shells, the inclusion of these effects alone apparently may not neces
sarily imply greater accuracy in results [1].

* This work has been supported by NSF under grant GK-892 to the University of Pennsylvania.
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The work to be presented here is an initial effort in a general study to obtain a unified
analytical theory suitable for analysis of local effects in beams, plates and shells, as well
as for general stress and deformation analysis of deep beams, and of thick plates and shells.
The material here only treats the development of a theory suitable for application to
deep rectangular strips. This theory is of interest in its own right; It is noted, however.
that the investigation is primarily undertaken because it is logically the simplest first step
to demonstrate a general philosophy of approach to be later applied to the important
problem of thick shell analysis.

No attempt will be made here to completely catalogue previous investigations lUto
this area of interest; however. some brief mention of some of the works which have lU
fluenced this author's thinking is in order. Horvay considered end effects in rectangular
strips [2J and built up, using an energy method, sets of orthogonal polynomials to represent
the self-equilibrating stresses imposed on the end of a rectangular strip. Some of the work
here will be a re-examination of Horvay's problem from a different point of view.

Higher order effects due to wave propagation in infinite plates were examined by
Mindlin and Medick [3J. Their work was based on systematic reduction of the three
dimensional equations of motion to a two dimensional set by expansion of all dependent
variables in series involving Legendre Polynomials.

St. Venant effects in thick axisymmetrically loaded cylinders were investigated by
Mendelson and Roberts [4J, and by Kaehler [5]. Their works had as a basis of approach
the solving of all unknown variables exactly in terms of the transverse shear stress. The
shear stress distribution was then obtained using collocation methods.

Finally, contact stress effects in thin strips have recently been investigated by Feng
and Goodman [6]. Following the lead of Mindlin and Medick, these authors also used
Legendre Polynomial representations for the depehdent variables. In this author's opinion.
however. their final results are seriously in doubt since they predict that the decay rate of
the stresses away from the contact region will be a strong function of Poisson's Ratio.
This is in direct disagreement with the predictions of the exact theory which requires that
the decay functions be governed by a biharmonic equation not involving material
properties.

In the following sections. an exact solution to the plane problem of the rectangular
strip will be formulated in a manner such that the interrelation between classical beam
theory and higher order theories is explicitly brought out. The exact formulation IS

developed in a form which is particularly amenable to consistent reduction to obtain
approximate theories of any order. A possible application of perturbation techniques to
the problem is then briefly discussed although not pursued in detail. Finally. a sample
solution is obtained using a higher order approximate theory to illustrate local effects.

DERIVATION OF GOVERNING EQUATIONS

Consider the thin rectangular strip of Fig.
governing field equations are:
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FIG. 1. Beam configuration.

Associated with equations (1) are the boundary conditions:

725

u or (Jx specified, and
w or (Jx~ specified.

17 = + 1, all x:

17 = -1, all x:

x = 0, L, all 17

(Jx~ = ru(x);

(Jx~ = rdx):

(J~ = qu(x)

(J~ = qL(X)
(2)

(3)

In the work to follow, certain classical definitions are useful:

In addition. define

f
hl 2

N(x) = (Jxdy:
-h12

Q(x) =fh
i
2 (Jxydy:

-h12

ru(x)+rdx) = p(x):

qu(x)+ qdx) = q(x);

f
hl2

M(x) = Y(Jx dy
-h12

Pfhl2
{3(x) = ~ yu dy

h' - hl2

ru(x)- !L(X) = p*(x)

qu(x)-qdx) = q*(x).

(4)

(5)

Noting boundary conditions (2), assume stresses (jxn and (J~ in the convergent series
representation

where

'"
(Jxn = So(x)+St(X)17+ L Sn(X)[Pn(17)-Pn-2(17)]

"=2

x

(In = Zo(X)+Zt(X)17+ L Zn(X)[Pn(17)-Pn- 2(17)]
n=2

(6)

and

p(X) = 2So(x): p*(X) = 2S t (x): q(x) = 2Zo(x);
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are as yet undetermined functions. By virtue of equations (4) the function S2(X) is related
to Q(x) in the form.

The dependent variables u(x, I)), w(x, IJ). ax(x.lJ) are also expressible lTI convergent
series form:

W(x, 'll = L Wn(x)Pn(IJ);
n= 0

ax = '\ Tn(x)Pn(IJ)·
n.::::O

18)

Orthogonality of the Legendre Polynomials makes this representation particularly con
venient for expressing boundary conditions at x = 0, L. Note that relations

U i(X) = h{j(x)/2; To(x) = N(x)/h: (9)

exist between classical beam theory variables and the variables of equation (8).
The procedure to obtain higher order theories is now apparent. Having represented all

of the dependent variables in the form of convergent series, we substitute into equations (I),

and, after eliminating the IJ dependence. we obtain sets of ordinary differential equatiOns
for determination of Vn(x). Wn(x). 1;,(x). Sn(x), Zn(x). The following relations involving
Legendre Polynomials and their derivatives are used:

where

11 2: ° flO)

t .) = d( ),d,/: P)IJ) = 0, 'I < 0

Pn = 11(r/Pn-Pn-il/(1J2-1) = 1I(11+l)(Pn"'I-Pn-l);(211~1)(lJz-I' III)

z_IP = (11+1)(11+2)p _p _ 11(11-1) p_p 112)
(IJ )n 1211+1)(211+3)(n-z n) (211+1)(211-1)(n n-2)

, (11+1)(11+2) 211(11-1)
IW- 1)(Pn-Pn- Z) = ('" ~1)(.1 +1)(Pn+2- Pn)-(1 .... 1)(} _,)(Pn-Pn-z)...11, _11 _ . _11, _11 j

( 131
(11-2)(11-3)

+-(}1-~)(Pn-l-Pn-.d.
... 11 - . )( _11 - )

Using equations (6). (8) and (10) in the first of equations (I) yields

+J ,,2(211+ 1) } _.'- ITn' I Sn k 1 Pn(lJ) - O.
n~O rl

• d()
) =-.

dx
114)

Since the Pn(lJ) form a complete set of functions in the interval - 1 :::;; IJ :::;; I. to satisfy
equations (14) for all x.1J we must require that

. 2(211+ I) ,
Tn(xl+ --h-~n+ I(X) = 0 II 2: O. 11.51
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Similarly, substitution into the second of equations (1) yields (after some rearranging of
summation indices)

11 ~ 1

nt {(S~-S~+2)+~(2n+1)Zn+I}Pn(1]) = O.

To ensure satisfaction of the above equation for all 1], we must require that

Q'(x)+q*(x) = 0

" 2(211 + 1)
Sn- Sn+2 = - h Zn+ dx);

(16)

(17)

(18)

(19)

where we have used equation (7) to obtain equation (17). Since a.,(x.1]) does not appear in
boundary conditions at x = 0, L, we use equation (18) to eliminate the functions Z"(x),
n ~ 2 from further considerations; hence, the normal stress an is written as

h f ' , [p"+ 1(1])- p"- d1])]a.,(x,1]) = Zo(x)+ZI(x)1]--2 1... (S"-S"+2) 2 1 .
n:1 11+

We recall that 2 0(x), 2 1(x), and S1(x) are known functions dependent solely on surface
stresses at n = ± 1. ~

Substituting (8) and (19) into the third of equations (1) yields an equation similar in
form to (14) and (16). Requiring satisfaction of this equation for all 1] yields the set of
ordinary differential equations:

vh
EU'o = To-v20 -'6(S'I- S3)

vh
EU'I = TI-v21-1O(S2-S~)

(20)

n ~ 2., Vh{S~_1 2(2n+1)S~+1 S~+3}
EU = T. +- --- +--

n n 2211-1 (2n-1)(2n+3) 2n+3

Using (8) in the second stress-strain relation yields a series involving p" and series involv
ing Pnand Pn- Pn- ~. Using equation (11) to eliminate Pn, multiplying the entire equation
by 1]2 - 1, and using equations (12) and (13) eventually leads to the result

2E oc. (n+ 1)(n+2) . 220 221-, L ., +3 W"+I(Pn+2-Pn) = -3-(P2-PO)+-3-(P3-P1)
1 'I: 0 _11

~ (11+ l)(n+2)[ Tn + 2 1;, ](P P+ 1... " ----- 2-)
"~o 2n+3 2n+5 2n+ 1 n+ n

h oc (n+ 1)(n+2)
-2 n~2 (211- 1)(2n + 1)(211+ 3) [S~_I - S~+ 1](Pn+2 - Pn) (21)

+~ I (n+ 1)(/1+2) [2(S~+I-S~+3) (S~+3-S~+5)J(Pn+ -P
n
).

.2 n: 0 (2n + 3)(2/1 + 5) 211 + 1 2/1 + 7 2

The functions (Pn+ 2 - Pn)are a complete set for equation (21) in the interval - 1 S 1] S 1
and hence to ensure satisfaction of (21), the coefficients of (Pn+ 2 - p") on each side of
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(21) must be equal. Hence, after some manipulation, we obtain:

Zoh vh [T2 J h
2

[25'1 35', S~lW (x) = -+- -- T, +- ----+ ---
I 2£ 2£ 5 0 4£. 5 7 35J

and, for n ~ 2

122)

(23)

h2
[ S~-1 3S~+1+- - +------

4£ (2n-l)(2n+ll (2n-I)(2n+5)

(24)

3S~+3 S~+5 l
(2n + l)(2n + 7)+ (2n + 5)(2n + 7)

Substitution of equations (8) into the final shear stress displacement relation of equa
tions (1) leads to essentially the same type of terms involved in the previous stress-strain
relation, After similar manipulations using equations (10), (11) and (2), we obtain the set
of ordinary differential equations

W'J---.~._[S.+2-S.~4 W~+)l
• (2n + 5) G " -

n ~ o. L~51

DECOUPLING OF THE EQUAnONS

The set of equations (15), (17), (20), (22), (23\. (24), (25) are the governing equations
necessary to determine the functions U.(x), Yv,.(x), T,,(x), In ~ 0) and S.(x) (n ~ 2), It is of
interest to note that they have been derived without making use of any orthogonality condi
tions, These equations can be put in a form which clearly indicates the higher order effects,
and which permits consistent truncations to obtain approximate solutions. The procedure
is as follows:

1. Equations (22H24), and (15) can be used to obtain W~ for n ~ 1 entirely in terms
of the stress functions Sm(x),

., Using these results, the functions U.(x) (n ~ 2) are obtained solely in terms of the
functions Sm(x) from equation (25).

3. Differentiation of equation (20). and application of equations (15) and the results
of step 2 yields a set of coupled equations involving only the functions Sm(x). Once
these equations are solved all of the other functions are determined in terms of the
functions Sm(x),

The equations in their final form are summarized as follows: The equations for the
determination of the functions Six) are:



where for n = 2, 3
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+ (211 + 3)(2n + 5) Z:'_ 2 (2n + 5) iv 4 (2n + 3)(211 + 5)(2n - 5) "
3(211 + 1) -h-+ 2(2n+ 1) S"-1 - 3h2 (2n + 1) $"-1

F x _ ~(2n-3)(2n+5)Siv _ (211-3)(2n-1) Siv _-±- (2n+3)(2n-1)(2n+5) "
"( ) - 3 (2n+1)(2n+7) "+3 6(2n+1)(2n+7) "+5 3h2 (211+1) S"+3

(27)

and for 11 ~ 4

F"(x) =
(2n + 3)(2n + 5) Siv + 2(211- 3}(2n + 5)Siv 2(2n - 3)(2n + 5) iv
6(2n + 1)(2n + 7) "-3 3(2n + 1)(2n- 5) "- I + 3(2n + 1)(2n + 7) S"+ 3

(211-3)(2n-1) Siv _ 4(2n-3)(2n+3)(2n+5)S"
6(2n + 1)(2n + 7) "+ 5 3(2n + 1)h2 "- I

4(2n - 3)(211 - 1)(2n + 5) "
- 3(2n + 1)h2 S"+ 3'

(28)

Using equations (4), the functions V"(x) are given as:

n = 2,3

V (x) = _~[3S:-1 6(2n + 1)S:+ 1

" 8£ (2n - 3)(211-1 )(211 + 3) (2n - I )(2n - 3)(211 + 3)(2n + 5)

4S:+ 3 S:+5 J
+ (211 - I )(2n +3)(211 + 7) (211 + 3)(211 + 5)(2n + 7)

h2Z~_2 hO+VI2)[S"_1 2(211+1)S"+1 S"+3J- + --- +--
4£(211-1)(211-3) E 211- I (2n- 1)(211+3) 2n+3

11 ~ 4

h3
[ S" 4S"V.(x) = __ - "-3 + "-1

" 8£ (2n-3)(2n-1)(2n-5) (2n-5)(2n-1)(2n+3)

6(2n + 1)S:+ 1 4S:+ 3
--:-----::~-::-:--=-..:.:.-~:----=-+ .
(2n -1)(211 - 3)(2n + 3)(2n + 5) (2n-l)(2n + 3)(2n + 7)

S:+5 J h(I+V/2)[ S"-1 2(2n+1)S"+1 S"+3 J
-(2n+3)(2n+5)(2n+7) + E 211-1-(2n-1)(211+3)+211+3'

(29)

(30)

The normal stress functions T,.(x) for n ~ 2 are given by the last of equations (20), while the
functions J¥,,(x) (n ~ 1) are given by equations (22H24). The above system constitutes a
set of 411- 8 equations. The assumed series solutions contain 411 - 2 unknown functions
of x. The remaining six equations are obtained from previous results which have so far
not been utilized to obtain equations (26H30); namely equations (15) for n = 0,1, equa·
tion (17), the first two of (20), and equation (25) for 11 = O. These six equations can be
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written in terms of classical beam theory resultants (using equations (7) and (9)) as:

lV' + p*(x) == 0:

'\'1' -0+ hp(xj = o·, ~., ,

Q' +q*(x) = 0:

" [q(X),h('P*' ,,)]
EL o == N/h-v -2+6 2-53 ,

EhfJ' = 6M _ v[q*(X! +~(, ~- Q' - S' )J
.2 h2 .2' 10 2 h *

) , 6Q pIx) S*(x) W 2
{)+ W o = 5Gh -'lOG + 5G-+~

131 )

To complete the problem formulation, we must specify the boundary conditions ID

terms of the series coefficients. Using the orthogonality relations for Legendre Polynomials,
we have at x = 0, L

where

U = L unPn(ry):
/1:::::0

IV = L wnPn(ry!:
":::;::0

') axfn(ry!
II-=()

132)

,.1

(.2n + llun == .2 I uPn(ry) dry
• - 1

·1

(.2n + l)aXn" == .2 J (J xnP"(y/) dYf etc.
- 1

Hence, the required boundary conditions at x = .X are

fin = Un('x) or ax" = T,(·x)
and

133)

lV" = W;,(.'<) or axn" = ISn(·x) - S". 2(.'<1l. 134)

Baving completed the development of the governing equations and boundary condi
tions, we comment briefly on the results. The expansion of all of the dependent variables
in series of Legendre Polynomials has enabled us to decouple the boundary conditions.
but it has led also to a formidable and infinite array of coupled ordinary differential equa
tions. A closed form exact solution to these equations is not obtainable: the best that can
be expected is a closed form approximate solution obtained by some COl1sistent truncation
of each series. In the author's opinion, the advantage of the formulation developed here IS

twofold: first, the development in terms of Legendre Polynomials assures convergence of
the series, so that the consistent inclusion of more terms in each series to obtain higher
approximations leads to a better solution: secondly, the development presented here
seems to indicate quite clearly the truncation necessary to obtain a consistent theory of
any order. For example, suppose it is desired to develop a consistent approximate theory
in which the highest order term in the shear stress involves Sn. 2(X). The second of equa
tions (34) immediately implies that for consistency in the boundary conditions, the series
for w(x, ry) must truncate after the term involving W~(x). Similarly, equations (15) imply
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that the series solution for aAx,l]) should include the term involving T,,+ dx). Finally,
(noting the order of the normal stress coefficients) a consistent boundary condition, as
given by the first of equations (34), requires that the series for u(x, 1]) should be truncated
after the term involving V n+ I(X). Hence, we may label as an nth order approximation a
theory which contains all terms in the respective series up to and including the following
terms:

nth order approx. (Sn+2(X), Wn(x), T,,+ I(X), V n+ tlx)). (35)

The single exception to equation (35), of course, will be for IJ = 0 where we should also
include the functions To(x) and Vo(x). For example. we give the governing equations and
boundary conditions for a consistent second order theory which includes the first higher
order effect in both the symmetric and the anti-symmetric distributions.

Symmetric problem

(36)

(37)

(38)

(39)

(40)

At x = O. L, we have

Vo or N specified: V 2 or T2 specified. and WI or S3-p*/2 specified. (41)

Anti-symmetric problem

Q'+q*(x) = 0

h
M'-Q+;;;p(x) = 0

..:.
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Tz(x) = EU~ - v2hU(~- ~')-~~5~J

Wz(x) = ~;~+;~[~3_ 2~J +::[221(~- ~') - ~~J

At x = 0, L

1441

1451

WI) or Q/h specified, and h{3/2 or 6Mlhz specified

Wz or (~-t-54) specified and U 3 or Tj specified

Note from equations (37H39) and 143H45) that the equations to determine the higher
order stresses are independent of material properties; as noted in the introduction. :.l

theory not possessing this characteristic cannot hope to give valid approximate solutions
for the field variables of the rectangular strip problem.

Solution of the above equations, subject to the given boundary conditions, yields
stresses and displacemen ts as

WIX. ry) = Wn(x)+ Wdx)I/+ WZ(x)P2(ry) 148)

PIx) p*(x) [PIX) QIX)]
(jx~(x,ll) = 2-+~1J+ 2--h- (Pzlry)-I)+53(xHP3 Iry)-Il!

-i- S4IxHP4(ry)- P2try))

(/(x) q"'lxl h [P*' " J
()~(:(./71=-2 +-2ry-6 2-.)j(x) (Pz(ll)-J)

- {~[~+~~~-5~(X)J(pj(rn-ry).

Classical beam theory for bending and extension of the strip (the n = 0 approximation)
is seen to be just equations (36) and (42) with 53(x). 54 Ix). and Wz(x) omitted. Note that
the lowest order theory includes shear deformation and transverse normal stress effects.
Further reduction to a Kirchhoff type theory neglecting such effects can only be justified
numerically, or by order of magnitude analysis of the zeroth approximation equations.
This is not surprising as we have insisted that a minimum criterion for an acceptable theory
be that all of the equations of elasticity are approximately satisfied for any truncation of
the series solutions.

The exact solution to the rectangular strip problem has been essentially reduced ta ;}
determination of the functions 5n(x), n ~ 3 by salving the coupled equations (26f--(~8).
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We examine the consequences of determining the homogeneous solutions Sn(x) by neglect
ing alI coupling terms in the equations: that is, we assume Sn(x) is given by the equation

.88
S~v+ ,(x)- 3h2 (2n-3)(2n+ 5)S~_, + 3It(211-1)(2n- 3)(2n + 3)(211 + 5)

11 ;::: 2. (49)

The solution is given as

4 ( (") x)
Sn+ ,(x) = i~' A i,"+ 1) exp Pn'+, h

with the characteristic roots given as

fln+' = ±2[(2n - 3)(2n - 1)(2n + 3)(2n + 5)/6] 114 exp( ±icPn+ ,/2):

A, _ -1[1'5(2n-1)(211+3)
'Pn+ 1 - tan

(211- 3)(2n + 5)

The two lowest root sets are

J1.3 = ±4·155±2·290i:

n ;::: 2.

P4 = ± 7·300 ± 3·120 i

(50)

(51)

These values are in good agreement with those obtained by Horvay using an approximate
energy approach [2]. However, as 11 increases, we obtain from equation (50)

P5 = ± 10'05 ± 3·80 i; P6 = ± 12·90± 3·99: etc. (52)

and the agreement with Horvay's approximate results becomes somewhat poorer. The
above computations and comparison with other works indicates that coupling effects
in equations (26)-(28) become more important for large values of n, and are negligible
for the lowest values of n. An area for further study immediately suggests itself. It may be
possible to construct a perturbation scheme of solution to approximately solve equations
(26)-(28) for all n. Such a scheme would introduce a perturbation parameter c such that
the right hand side of equation (26) would be r.Fn(x) instead of Fn(x). The perturbation
scheme would evolve a solution for Sn+ dX) in powers of c as well as a solution for Pn+'
in powers of c. Setting c = 1 in the result may yield improved approximate solutions.
A perturbation technique well suited for this suggested approach has been recently
investigated by the author [7, 8J: its application to the rectangular strip problem in the
above suggested manner is currently being investigated and wilI be reported on at a later
date.

APPLICAnON OF THE THEORY

As an example of the possible utilization of the approximate theory contained in
equations (36H46), we examine the beam problem ilIustrated in Fig. 2. It is of interest
to determine the stress distribution in the immediate vicinity of the highly localized
pressure distribution. Specializing equations (36)-(46) to the particular pressure distribution
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of Fig. 2 yields the followmg governing equations which are of interest in determining local
stresses:

N = 0

5h 3 10 Pa 3

T,(x) = -S'3"--hS'3--exp(-ax/h)
- 252 21 48h

P
Qh;} = ,..[exp(-axih)-I]

PL [ 2x 2h ];'.'[(xl = - I-----expl-axih)
4 L aL

. 88 3960 IIP(a)~ ,
S'; - ,-S~+-4S~ = -- - 11-6/a-)exp(-ax,h)

h- h 7h h

7h
3

14h P [a
2 J Pfl+v2)

U 3(x) = ·_-S~--(I+v/2)S~+- --0+v.2) expl-axih)+ O£
1980£ 45£ 10£ 18 I

7h
3

14h Pa ra2 JT(x) = --S"--S~-- --I exp(-uxh)
3 1980 4 45 10h '- 18

1531

- 154)

I·

Rigid block

P, n support

FIG. 2. Beam loading for sample problem.

In obtaining the above equations, we have already made use of the boundary conditions

NiL2) = ;\[(L2) = Q(O) = 0
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Solutions for the shear stress functions S3(X) and S4(X) are

S3(X) = CoEC[X/hJ+ClES[X/hJ+C2EC[~ -~J+C3ES[~ -~J

21P
- 20yh exp( -ax/h) (56,

- - -[ L xJ -[ L xJS4(X) = DoEC[x/hJ+D 1ES[x/hJ+D2EC 2h -Ii +D3ES 2h-1i

llJlP
-~exp(-ax/h) (57)

where

and
}' = 1- 24/a2 + 504/a4

: (58)

EC(y) = exp( -4'155y) cos(2'29y):

EC(y) = exp( -7'300y) cos(3'12y):

ES(y) = exp( - 4'155) sin(2'29yl

ES(y) = exp( - 7'300y) sin(3·12y).
(59)

To obtain the stress distribution near x = 0 neglect end interactions so that only constants
Co, C l' Do, D1 need be evaluated. Equations for determination of these constants are
obtained from the condition that at x = 0,

(60)

Once the integration constants are evaluated, the local stress distributions are obtained
from equations (48). In Fig. 3, for example, are plotted the local shear and axial stress
distributions for the case of the loading decay parameter "a" equal to 20. This value for
"a" gives a reasonable representation of a localized' loading; the applied pressure is
reduced to Ve 2 of its value at x = 0 at the point x = 0·1 h.

In Fig. 3(a) is shown the shear stress distribution as a function of '1 at various stations
along the beam, As is to be expected, the distribution in the immediate vicinity of the
loading exhibits considerable deviation from the classical assumed parabolic distribution.

1·0

o-s

0·6

0·4

0-2

0-2
7J 0

I 0·4 0-6 o,s 1-0

-0'2 .
-0,4 \-0,6

-o·s .
1;-=0'1

-1·0
1;- =0'2 1;-=0'4
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As X is increased, the transformation to a parabolic distribution becomes evident. For all
practical purposes, the parabolic distribution is essentially establIshed at x = OAh. Note
that the shear stress distribution is independent of the thickness to length ratio of the
beam.

In Figs. 3(bl, 3(c) and 3(d) are piotted similar results for the axial stress distribution.
The solution for the axial stress is a function of the thickness to length ratio hL. The
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first ratio gives a beam configuration that is usually considered as being describable by a
classical beam theory_ The second ratio gives a beam configuration that can be classed
as moderately thick: beams having this depth to length ratio have heretofore been
examined using some theory including transverse normal stress and shear deformation_
(Such theories are classified in the terminology of this paper as zeroth order theories.)
Figure 3(b) shows that for the thinner beam, local effects are not too important (for the
particular loading used here) and the stress distribution is adequately described for design
purposes by the linear distribution of classical theory. It should be noted, however, that
there is a 12 per cent error in the prediction of maximum stress at x = 0; hence, in certain
design situations, the application of a higher order theory might be in order even for the
thin beam described. Note that at x/h = 0·1. the linear distribution has essentially been
established.

For the thicker beam (h/L = 0-35), the situation is considerably different. A consider
able deviation from linearity exists in the vicinity of the local loading and gives rise to
maximum stresses which are much higher than the linear distribution prediction. If h/L
were further increased, the deviations would of course be more and more significant and
eventually would be of a non-negligible character over the entire length of the beam.
From the work done so far, it has not been possible to establish an upper limit to the
application of the second order theory used in these calculations, but it is quite likely
that for much larger h/L ratios, a higher order theory would be in order. Further study
of this question is now going on and will be reported on at a later date.

For design purposes, an important result is the value of the maximum axial stress.
The table below presents an indication of the per cent error involved when one uses a
classical theory for stress prediction. The numbers in the table are values of the error
parameter E defined as

(Jo-(Jo
E = x_ x x 100

(jxl

(61 )
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where
O'x2 = axial stress predicted by second order theory

O'xO = axial stress predicted by classical beam theory

TABLE I VALUES OF E FOR DIFFERENT hlL RATIOS AT DIFFERENT AXIAL STATIONS

, h
", I) 01 02

hL

0,083 E = 1215 5~5 05~

035 E = ~337 20'57 2 ~9

CONCLUSIONS

This work presents a derivation of a beam theory incorporating higher order
St. Venant effects. The governing equations are derived by systematic reduction of the
two dimensional elasticity equations. Although the reduction initially yields an infinite
set of coupled ordinary differential equations which describe the behavior of the field
variables, a consistent truncation scheme is easily evolved to reduce the set to a finite
array incorporating as many higher order effects as deemed necessary for particular
applications. The equations for a second order theory involving the first two higher order
effects are presented and a sample calculation is included to show effects of local loading.

It is felt that the second order theory presented here can be effectively used to study
contact problems involving rectangular strips. Although application to beam problems
is of considerable interest: of far greater interest. in the opinion of the author. is the
possibility of extending the derivation to shell configurations to obtain consistent theories
exhibiting local effects. (Such a theory when evolved should also shed some light on the
problem of determining a best first order shell theory.) A shell theory exhibiting such local
effects may match almost exactly all of the 3-D elasticity results presented in [IJ, (which
were heretofore used to examine and compare only first order shell theories).
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AOCTpaKT-l1ccJlClIYIOTCll pery.1HpoBaHble ypaBHeHHll npllMoyroJlbHOH nOJlOCbl C ueJlblO nOJlY'leHHlI

peweHHH, KOTopb,e YKa3bIBalOT Ha 3aBHCHMOCTb MelKlIY KJlaCCH'IeCKOH TeopHeH 6aJlKH H TeOpHlIMH BbICWHX

paHrOB. CTporHe ypaBHeHHII nJlOCKOH ynpyrocTH CDOllllTCII K conplllKeHHoii CHCTeMe 06blKHOBeHHbiX

J\H(jl(jlepeHUHllJlbHbIX ypaBHeHHii nyTeM npellCTaBJleHHII Bcex 1aBHCHMbiX nepeMeHHblX B BHnc peweHHii B

pllnax, KOTOPblC 3aK.llO'IaIOT nOJlHHOMbl flclKcllllpa B KoopllHHaTC TOJlWHHbl. nOJlHHOMbI flclKaHnpa

OC06CHHO nOJlC1HbJC nJlIl :noro MCTOlla B BHllY HX yno6Hoii (jlOPMYJlHPOBKH cBoiicTB nOJlHOTbl, CXOnHMOCTH

H opTOrOHaJlbHOCTH, H nonOMY, 'ITO 06blKHOBCHHbie PC1YJlbTaTbi HanplllKCHHH K,laCCH'IeCKOii TeopHH

6aJlOK OKa3bIBalOTClI no HaTypc KOJ(jl(jlHlll1CHTaMH nOJlHHOMOB P, H P2 . npellCTaBJlCHHble B TaKOM BHnc

conplllKCHHbIC 06blKHOBCHHble lIIi(jl<jJcpeHUHa.lbHbIC ypaBHcHHII n03BaJllllOT Ha TO. 'ITO MOlKHO OT6poCHTb

'1aCTb PllllOB C UCJlbKl nO,ly'lcHHII HCMellJlCHHO npHOJlHlKCHHOro peweHHII. J.1cCJlenYIOTCII J(jl<PeKTbI con

plllKeHHII H npellnOJlaraeTCII MeTon onpellCJlCHHII npH6JlHlKeHHOro pCWeHl111 11,111 nOJlHbIX conplllKeHHblX

ypaBHeHHH, HC oT6paCblBall '1aCTH PJlllOB B pcweHHlIx B nO,lHHOMax. Pa3pa60TaHO lleTaJlbHO np06HylO

3alla"y C ueJlblO HJlJlIOCTpaUHH npHMeHeHlill HOBOii npH6JlHlKeHHOH TeopHH.


